首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7654篇
  免费   451篇
  国内免费   22篇
  2023年   94篇
  2022年   141篇
  2021年   373篇
  2020年   357篇
  2019年   502篇
  2018年   404篇
  2017年   285篇
  2016年   383篇
  2015年   415篇
  2014年   508篇
  2013年   670篇
  2012年   622篇
  2011年   623篇
  2010年   322篇
  2009年   280篇
  2008年   334篇
  2007年   323篇
  2006年   279篇
  2005年   242篇
  2004年   185篇
  2003年   131篇
  2002年   114篇
  2001年   44篇
  2000年   29篇
  1999年   43篇
  1998年   26篇
  1997年   24篇
  1996年   20篇
  1995年   16篇
  1994年   11篇
  1993年   28篇
  1992年   14篇
  1991年   38篇
  1990年   21篇
  1989年   24篇
  1988年   12篇
  1987年   22篇
  1986年   16篇
  1985年   18篇
  1984年   16篇
  1983年   10篇
  1982年   13篇
  1981年   13篇
  1980年   12篇
  1979年   6篇
  1978年   7篇
  1976年   7篇
  1974年   8篇
  1973年   7篇
  1972年   7篇
排序方式: 共有8127条查询结果,搜索用时 572 毫秒
91.
92.
Failed oocyte activation has been observed in unexplained infertile (UI) and asthenoteratozoospermic (AT) men. The deficiency of phospholipase C‐zeta (PLCζ) could be a possible reason for such failures and has not been studied yet. We investigated the expression and localization of PLCζ protein in the sperms of patients with UI and AT conditions. The relationships between PLCζ‐related parameters with male age, sperm characteristics, DNA integrity, and cellular maturity were assessed. Semen samples were collected from fertile (n = 40), UI (n = 40), and AT (n = 40) men. Subsequently, semen analysis, DNA fragmentation, hyaluronic acid‐binding ability, and PLCζ level along with its distribution were evaluated using computer‐assisted sperm analyzer, sperm chromatin structure assay (SCSA), hyaluronic acid‐binding assay (HBA), western blot analysis and immunofluorescence microscopy, respectively. Unlike SCSA, the values of HBA, and PLCζ expression were significantly reduced in UI and AT patients compared to fertile men, whereas no significant differences were observed among the experimental groups in terms of PLCζ localization patterns. The regression analysis also showed that HBA is the only variable associated with PLCζ levels. Furthermore, the correlation of male age with PLCζ localization in postacrosomal, equatorial, and acrosomal+postacrosomal+equatorial (A+PA+E) patterns, as well as the relation of normal morphology, with the (A+PA+E) pattern, remained in the regression model. Our findings indicated that reduced PLCζ level along with the increased DNA fragmentation and impaired maturation may be possible etiologies of decreased fertilization in the studied subjects.  相似文献   
93.
Russian Journal of Bioorganic Chemistry - Pyridazines hold considerable interest relative to pharmacologically active molecules. The pyridazine compounds are exhibited different types of...  相似文献   
94.
Stressor (biotic as well as abiotic) generally hijack the plant growth and yield characters in hostile environment leading to poor germination of the plants and yield. Among the plant growth promoting rhizobacteria, Azotobacter spp. (Gram-negative prokaryote) are considered to improve the plant health. Various mechanisms are implicated behind improved plant health in Azotobacter spp. inoculated plants. For example, acceleration of phytohormone like Indole-3-Acetic Acid production, obviation of various stressors, nitrogen fixation, pesticides and oil globules degradation, heavy metals metabolization, etc. are the key characteristics of Azotobacter spp. action. In addition, application of this bacteria has also become helpful in the reclamation of soil suggesting to be a putative agent which can be used in the transformation of virgin land to fertile one. Application of pesticides of chemical origin are being put on suspension mode as the related awareness program is still on. As far as the limitations of this microbe is concerned, commercial level formulations availability is still a great menace. Present review has been aimed to appraise the researchers pertaining to utility of Azotobacter spp. in the amelioration of plant health in sustainable agroecosystem. The article has been written with the target to gather maximum information into single pot so that it could reach to the dedicated researchers.  相似文献   
95.
In the present work, a novel biocompatible scaffold was fabricated for the DNA aptamer immobilization. For the first time, amino‐functionalized dendritic fibrous nanosilica (KCC‐1‐nPr‐NH2) and gold nanoparticle supported by chitosan (AuNPs‐CS) were synthesized and electrodeposited successfully on the surface of the glassy carbon electrode by chronoamperometry technique. Unique oligonucleotide of aflatoxin M1 (5′‐ATC CGT CAC ACC TGC TCT GAC GCT GGG GTC GAC CCG GAG AAA TGC ATT CCC CTG TGG TGT TGG CTC CCG TAT) labeled by toluidine blue was immobilization on the prepared interface. Hence, a novel aptamer‐based bioassay was formed for highly sensitive quantitation of AFM1 using cyclic voltammetry and differential plus voltammetry. The structure and morphology of GQDs‐CS/KCC‐1‐nPr‐NH2 were investigated by Fourier‐transform infrared spectroscopy, X‐ray diffraction, atomic force, scanning electron microscopy, and energy‐dispersive X‐ray spectroscopy. The achieved low limit of quantification of apta‐assay for detection of AFM1 was 10fM. Also, calibration curve was linear from 0.1μM to 10fM in real samples. The proposed apta‐assay has acceptable long‐term stability. Designed aptasensor has a lot of remarkable advantages including excellent selectivity, sensitivity, and stability that could be used as facile bio‐device for the determination of AFM1 in milk samples.  相似文献   
96.
In this study, a novel electroconductive interface was prepared based on Fe3O4 magnetic nanoparticle and cysteamine functionalized gold nanoparticle. The engineered interface was used as signal amplification substrate in the electrochemical analysis of antibody‐antigen binding. For this purpose, biotinilated‐anti‐prostate‐specific antigen (PSA) antibody was bioconjugated with iron oxide magnetic nanoparticles (Fe3O4) and drop‐casted on the surface of glassy carbon electrode (GCE). Also, secondary antibody (HRP‐Ab2) encapsulated on gold nanoparticles caped by cysteamine was immobilized on the surface of GCE modified electrode. A transmission electron microscopy images shows that a sandwich immunoreaction was done and binding of Ab1 and Ab2 performed successfully. Various parameters of immunoassay, including the loading of magnetic nanoparticles, the amount of gold nanoparticle conjugate, and the immunoreaction time, were optimized. The detection limit of 0.001 μg. L?1 of PSA was obtained under optimum experimental conditions. It is found that such magneto‐bioassay could be readily used for simultaneous parallel detection of multiple proteins by using multiple inorganic metal nanoparticle tracers and are expected to open new opportunities for early stage diagnosis of cancer in near future.  相似文献   
97.
98.
The rapid and sensitive determination of riboflavin (RF) is important for the treatment of seborrheic and glossitis dermatitis, sunlight sensitivity, mucosal, and skin disorders. In this work, an electrochemical sensor was developed by electrodes modification using poly (chitosan) to sensitive detection of RF in commercial multivitamin. Electrodeposition of chitosan on the surface of glass carbon electrode was performed using cyclic voltammetry technique in the range of ?1 to +1 V. The modified electrode surface morphology was characterized using a high‐resolution field emission scanning electron microscope. The modified electrode was used as an effective electrical interface for the detection of RF using cyclic, differential pulse, and square wave voltammetry techniques. Finally, the sensor was applied to determine RF in commercial multivitamins. In optimum conditions, the linear range for the standard sample of RF and commercial multivitamins 94 to 333μM and 24.6 to 176μM were obtained, respectively. Low limit of quantification (LLOQ) were obtained as 24.6μM.  相似文献   
99.
Angiosperm reproductive development is a complex event that includes floral organ development, male and female gametophyte formation and interaction between the male and female reproductive organs for successful fertilization. Previous studies have revealed the redundant function of ATP binding cassette subfamily G (ABCG) transporters ABCG1 and ABCG16 in pollen development, but whether they are involved in other reproductive processes is unknown. Here we show that ABCG1 and ABCG16 were not only expressed in anthers and stamen filaments but also enriched in pistil tissues, including the stigma, style, transmitting tract and ovule. We further demonstrated that pistil‐expressed ABCG1 and ABCG16 promoted rapid pollen tube growth through their effects on auxin distribution and auxin flow in the pistil. Moreover, disrupted auxin homeostasis in stamen filaments was associated with defective filament elongation. Our work reveals the key functions of ABCG1 and ABCG16 in reproductive development and provides clues for identifying ABCG1 and ABCG16 substrates in Arabidopsis.  相似文献   
100.
Cadmium (Cd) is highly toxic metal for plant metabolic processes even in low concentration due to its longer half-life and non-biodegradable nature. The current study was designed to assess the bioremediation potential of a Cd-tolerant phytobeneficial bacterial strain Bacillus sp. SDA-4, isolated, characterized and identified from Chakera wastewater reservoir, Faisalabad, Pakistan, together with spinach (as a test plant) under different Cd regimes. Spinach plants were grown with and without Bacillus sp. SDA-4 inoculation in pots filled with 0, 5 or 10 mg kg−1 CdCl2-spiked soil. Without Bacillus sp. SDA-4 inoculation, spinach plants exhibited reduction in biomass accumulation, antioxidative enzymes and nutrient retention. However, plants inoculated with Bacillus sp. SDA-4 revealed significantly augmented growth, biomass accumulation and efficiency of antioxidative machinery with concomitant reduction in proline and MDA contents under Cd stress. Furthermore, application of Bacillus sp. SDA-4 assisted the Cd-stressed plants to sustain optimal levels of essential nutrients (N, P, K, Ca and Mg). It was inferred that the characterized Cd-tolerant PGPR strain, Bacillus sp. SDA-4 has a potential to reduce Cd uptake and lipid peroxidation which in turn maintained the optimum balance of nutrients and augmented the growth of Cd-stressed spinach. Analysis of bioconcentration factor (BCF) and translocation factor (TF) revealed that Bacillus sp. SDA-4 inoculation with spinach sequestered Cd in rhizospheric zone. Research outcomes are important for understanding morpho-physio-biochemical attributes of spinach-Bacillus sp. SDA-4 synergy which might provide efficient strategies to decrease Cd retention in edible plants and/or bioremediation of Cd polluted soil colloids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号